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ABSTRACT

A method is developed for computing the probability
that an air attack will penetrate a point defense made
by a surface-to-air missile system. Analytic ex-

pressions are obtained from a model for the proba-
bility of penetration by at least one of k attackers,
as a function of k and of the spacing between suc-
cessive attackers, the number of shots that can be
made at an approaching attacker, and the single-shot
kill probability of the defensive missiles. The model
is initially 'or'-med in terms of a constant spacing be-
tween attackers, but modifications are found that
pen - generalization to obtain results for any spac-
ing bL .ween attackers. The mean number of attackers
required for penetration can be approximated very
closely by a formula that is valid throughout the range
of tactical interest. The number of attackers required
to saturate the defensive capabilities and thus to
ensure penetration is shown to be only slightly greater
than the mean.
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I. i;VTRODUCTION

1.1 Th3 problem of determining the capability of a surface-to-air
defensive system to withstand an air attack is extremely complicated
in the general case. Solutions can easily be obtained if the attackers
arrive at the defense perimeter either widely spaced or simultaneo. 'ly,
but in general the defense is faced with a choice of firing doctrine and
with dealing with a large number of compound events.

1. 2 What one expects of a mathematical model of a situation is a
formulation that allows the easy calculation of results and also permits
a study of the sensitivity of the results to a variation- in the parameters
of the problem. Owing to the complexity of the problem many previous
studies of the air defense problem have resorted to gaming and simula-
tion of various possible engagements to determine the penetration prob-
abilities of attacking forces. This is a cumbersome method and requires
the repetition of a large number of simulated engagements on an electronic
computer in order to obtain valid results. If any change is made in the
performance characteristics of the defense or attack missiles, another
lengthy series ( 2calculations must be made.

1.3 To avoid these difficulties an analytical model has been de-
veloped in which the basic parameters were deliberately chosen to be
abstract quantities not intennaed to be defined numerically untI a specific
application was required. This method of formulation has a number of
advantages. The physical identification of the parameter can be charged
to suit the needs of a particular kind of defensive situation, so that it is
possible to consider within the framework of the model defensive systems
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effectiveness of multilauncher defensive systems with different degrees
of coordination of fire. In addition to its versatility in dealing with a
variety of physical situations, the model provides a simple and rapid
means of calculating results. The probabilities that the attackers pene-
trate the defenses can be computed for many cases on a desk calculator,
and the effects of changing parameters can be investigated .y this means.
If it is desired to obtain the results in fine detail i4 will still be neces-
sary to use an electronic computer; but the results obtained are in closed
form and do not depend on gaming, so that they can be obtained quickly
and easily.
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II. RIGOROUS FORM OF THE PENETRATION PROBAr'T - !TIES

BASIC PARAMETERS IN THE MATHEMATICAL MODEL

2.1 The parameters required to describe an attack situation are the
number of shots that can be made at a single attacker, the spacing be-
tween the attackers, the single-shot kill probability of the defensive mis-
siles, and the number of attackers.

I
2.2 The number of shots that it is possible to take at a single attacker
is called a . The physical identification of this parameter will depend
"on the range at which the attacker can be intercepted, which in turn de-
pends on the type of attack and the range and altitude the defensive mis-
sile can reach. The physical identification will also depend on the rate
of fire of the aefensive missiles and the speed of the attackers.

2.3 The spacing between attackers is expressed in terms of the frac-
tion of the interval between successive shots by the defense, (s/T). This
dimensionless choice of time unit facilitates the counting of obligations
assumed by the defense, which are imposed at the appropriate spacings
of a shot. It can be seen immediately that if the attackers arrive at less
than unit spacing, the defense will ultimately be overwhelmed. The physi-
cal identification of the spacing expressed in these dimensioniess units
depends on the actual time spacing of the attackers, s , and on the time
between successive firings of the defensive missiles, T .

2.4 Further parameters needed in setting up the defense model are
the single-shot kill probability of the defensive missiles, p , and the
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number of attackers, k . Both of these quantities have direct physical
significance. The complementary probability (q = I - p) of a single-shot
failure is also useful.

2.5 The parameter a , the number of shots that it is possible to take
at a single approaching attacker, is the most difficult to evaluate because
it depends on the tactics and physical characteristics of both the attack
and the defense. The parameter obviously depends on the range of the
attacker at the time when effective defensive fire can commence; however,
this may be limited by the capability of the defense to detect and evalu-
ate the attack threat. The number of missiles that can be fired as a single
attacker crosses the defended zone is given by

(Ra - Ro) Ro
a1=!+ + -(2.1)

TVa TVd

where
Ra = effective range of the defensive missile,

or the range of attack detection and evalu-
ation, whichever is smaller (outer perimeter
of defense zone);

Ro = range at which an attack missile can damage
the defended target (inner perimeter of defense
zone);

Va = velocity of the attacking missiles;

Vd = velocity of the defensive missiles.

ASSUMED DISTRIBUTION OF DEFENSIVE FIRE

2.6 The probability that the defenses will be penetrated by an attack
is a function of a , s/T, p, and k ; but the way in which these quantities
are combined to obtain the penetration probabilities of the attackers de-
pends on an assumed doctrine of fire for the defense. The model that has
been developed specifies that the defense shall direct its fire at the nearest
attacker until it is hit. In order to apply this doctrine in practice it may be
necessary to reassign a missile already in flight to a new target as soon as
it becomes known that a kill has been scored. This would require very close
coordination of the launching and the guidance systems, and represents a
clear limitation on the applicability of the model. However, the
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model that has been developed would also apply to the case where the
flight reliability and the lethality of the defensive missiles are so high
that the missile effectiveness is limited by events in the launch and boost
phases, which would permit an evaluation to be made soon after launching.

INTEGRAL SPACING OF A'rTACKERS

2.7 Using this firing doctrine, it is possible to build up the proba-
bility of firing at a given attacker in any of the time intervals of duration
T each during which it is in range. The first case considered is for attack-
ers arriving spaced an integral number of shots apart (s/IT is integral).

2.8 Consider a firing battery that has an opportunity to fire a shots
at an approaching attacker, and assume that an attacking file of uniformly
spaced planes is approaching at a rate such that the battery can fire s shots
at the first plane in the file before the next plane gets within range. The
doctrine wiil be to fire at a plane until it is hit and then to fire at the next
plane.

2.9 The operation of this doctrine is shown schematically in Figure 1
for the case where the battery has time for a = 6 shots at an approaching
plane, and the attackers are spaced s = 3 shots apart. Several possible
sequences of events are shown. The lower route shows the case of three
failures (marked by F) in firing at the first plane, followed by a success
(marked by S) on the fourth shot. After this it is possible to fire at the
second plane, which has been within range for a length of time during
which one shot could have been fired if there had been a battery available.
A continuation along the bottom route in the diagram shows a failure in
shooting at the second plane, followed by a success which makes it pos-
sible to fire at the third plane as it comes into range. Another possible
sequence of events in shown in the upper route. Here there is a failure
followed by a success in firing at the first plane. The battery is then
idle for a one-shot spacing until the second plane comes into range. In
the sequence shown the battery scores a success against the second
plane on the first shot at it and then is idle for a two-shot spacing until
the third plane comes into range.

5
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2. 10 Matrýx Formulation. It is possible to keep track of these various
possible courses of events by setting up a matrix that transforms the proba-
bility of shooting ;t a given plane to the probability of shooting at the next
plane in the file. The first case consider•wil " be that of uniformly spaced
planes approaching Fn integral number of .3hots apart. The probabilities,
bj(k) , of firing at the k-th plane during each of the a periods that it is in
range can be arrayed 1r, a rowy matrix 'of a elements)

Bk = (,l(k)b(k)k) . . ba(k) . (2.2)

The bj(k) are functions of the single-shot kill probabilities. If the proba-
bility of making a kill wldh a single shot is p and the probability of fail-
ing to. make a kill is [ (I - p) = q] , then' the probability, Qk , that the k-th
plane penetrates the defense is equal to the probability of firing at it on
the a-tb shot and missing, i.e.,

Qk = ba(k)q • (2.3)

TRANSFORMATION MATRIX

2.11 The elements bj(k) of Bk can be obtained by successive matrix
multiplication, a- will now be shown. The first matrix, B1 , of shots at
Lhe f.lsi picne- cin be obtained by inspeCLIUn. The event of successive
firings at the first plane can occur as a result of repeated failures, and
the probability of firing at the first plane on the j -th shot can be repre-
sented as the j-th element of a row matrix.

B, = q . . . qa (.4)

2.12 The probability that the first plane penetrates, Q2 , is then

qa . It is now necessary to find a matrix that will multiply B1 on the

right to transform B1 into BZ . For this purpose an a by a square
matrix 1.' is written with the element Mi. (in the i-th row and j-th
column) chosen so as to transform the J-th element of B1 into a contri-
bution to the i-th element of B2  The matrix M is given by

2•
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p PPq pq" .-/ ,a-
ppq pq pqa-1

Sros

p pq pq2 : : : . : pqa-I
0 ppqp . . . . .p. pqa- 2  (2.5)

0 0 .. pqa-3

-

000 s-
0 0p pq pq .Pq pq

00 0 . . 0 1 q . . qS ,-2 q S-

s columns

The first column has s p's in it because a success in any of the first s
shots at the first plane permits a shot at the next plane as soon as it
comes into range. The rest of each 6f the girsZ s rows is filled in by
multiplying successive elements across the rows by q ; this occurs
as a result of applying the firing doctrine, whlch specifies that after a
miss one fires again at the same plane, which will have advanced one
spacing. From the first element of the s-th row of the matrix a diagonal
of p's extends downwards to the last row. Consektltng the diagram of

Figure I will make it clear that a success on the (s + J)th shot at the
first plane will make it possible to fire at the second plane on the
(j + l)st shot, Again the rows are filled in by multiplying successively
across by q . The first non-zero element in the last row -s not p but
unity because of the following interpretation of the firing doctrine. The
first plane is only in range for a shots, and it would be impossible to
fire (a + 1) shots at it. After the a-th shot at the first plane, there-
fore, the missile launcher is directed more or less in desperation at the
second plane. The contingency that the launcher may not be there to
direct at anything Is taken into account by computing the penetration
probability of the first plane. The last row of the matrix is filied in like
the others by multiplying successively across by q.
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2.13 The distribution of probabilities of shots at the second plane can
now be obtained as

B2 = BIM , (2.6)

and the penetration probability of the second plane

0
0
0

Q 2 = .31 M (2.7)

where the column matrix on the right has a rows and so multiplies the

probability of making an a-th shot by the probability of a single-shot
failure.

2.14 On substituting for B1 and M their values given above, one
finds after making reductions based on the relation p + q = 1

QZ = qa[1 + (a- s) pqS- 1 I (2.8)

2.15 Multiplication to Obtain Successive Probabilities. The matrix

M was derived so as to transform the array of probabilities of sl •ts at
a given plane to the array for the next plane. It is thus possible to
find Bk and Pk for the k-th plane by multiplying B1 by successive
powers of M

Bk =BMk-1 (2.9)

9



and

Qk = BIMk- 0 (a rows) . (2.10)

2.16 Matrix Equation for Penetration Probabilities. The individual pene-
tration probabilities, Qk ' can be used to obtain the probability Pk that at
least one out of an approaching file of k planes penetrates the defense. This
is given by

k
Pk = 1- [{ (l-Qn) . (2.11)

n=l

2.17 Equivalent Formulations. It is possible to transform- the matrix M
to other forms, mathematically equivalent, which may either result in a sim-
plification of the computation or assist in setting up transformation matrices
for more general cases than that of integral spacing.

2.18 As a preliminary it can be seen that if a matrix N is related to M
by a similarity transformation R , i.e.,

-I
N = R MR, (2.12)

then

Qk=BIMk-(I = BIR(R-IMR)k-IR-I((.1)

10

•'-•-;- -- 'liiz• =''"--• •- - - " ''-'- - •• ii-- --0- 0-• - --- •-- - -.- . .. -:-• •.. . ;



= BRNk-IlR- ( (2. 14)

2.19 Several transformaticns, which can readily be generalized, are
illustrated for the case where s = I and a = 3. Then setting up the trans-
formation matrix as i., the expiession (2.5)

p pq pqZ\
M= 0 p pq (2.15)

0 0 1

2.20 A transformation is now shown that reduces the dimensionality
of M from a to (a - s ) and permits the Qk to be expressed in the form of a
power series. For this purpose, let

R= 1 p (2.16)
(00 1

so that

R-I = 0 -P (2.17)

11
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Then

/p pq 0
N= R-IMR= 0 p 0 (2.18)

0 0 !.

and

k- -pq 'Qk 1G I I)Nk- -Pq
= (11lNl y-pq) (2.19)

Sq

Now

(1 1 1)N = [(I-q)(1 q?)1 1

= (11 1 )+ (-q-qz2 ) (2.20)

so that

k2 -pq
Qk = Qk-1 +(-q -q2 0) Nk -pq (2.21)

q/

From the position of the vanishing elements in the transformed matrices,
it is apparent that the last term on the right can be expressed as a product

12



of matrices of reduced order, i.e.,

0 /-z-pq 2  k-2- (,-2

(-q 0) Nk ~-pq )= (-q -q2 Op pJt ~-pq)2 o, (o ) k-2,q)

pq (I q)<(, 0 pq - ()

= pk-i q3 (1 1)( 1 )k-2(i) . (2.22)

2.21 If this transformation is generalized, it is found that the Qk can
be expressed as a power series in pqS-l with. coefficients derived from a
matrix of order (a-s) . Specifically,

Qk a I + ýAn (pqs-l)n-] (2.23)

where

An= 1 1 1 1) M*n-Z1 (a-s elements) (2.24)1

and M* is a square matrix with (a-s) rows and columns (i and j < a - s)
with elements equal to either zero or one.

13



Mjj = 1 (j >i-s) (2.25)

= 0 (<i-s) . (2.26)

Furthermore if s is equal to or greater than half of a , the matrix M * has
nothing but unit elements, and the matrix product reduces to

An = (a-s)r . (2.27)

Thus the factor multiplying qa in Qk is part of a geometric series with a
common ratio (a - s) pqS- . In some cases the work of computation may
thus be considerably reduced.

TRANSFORMATION TO DISTRIBUTION- OF FIRST SHOTS

2.22 The matrix M can be subeacted to another similarity transforma-
tion, which results in the distribution of first shots at a given plane rather
than the distribution of total probabilities of shooting at a given plane.
Such a formulation may result in greater convenience of computation, and
it also suggests a way of setting up the transformation matrix more easily
in the general case of non-integral spacing.

2.23 A transformation is now shown that gives the distribution of first
shots for the case of a=3 and s=l . Again the method is readily generalized.
Let

U =( 1 q (2.28)
(001

so that

u-1I q1 (2.29)
0 1

14



Qk = (1 q q 2 ) Mk-( 0

q3

= (1 0 o) vk-( Z (2.30)

where

(1 0 0) = C 1 = B1 U (2.31)

and

V= U-IMU 0 (p q (2.32)

2.24 Inspection of a diagram for this case shows that the matrix V
transforms an array of probabilities of taking a shot for the first time at
a given plane into a corresponding array for the succeeding plane. The
new column matrix on the right in the expression for Qk multiplies the
first-shot probabilities by the probabilities of the requisite number of fail-
ures to permit a penetration. The row matrix on tne left is made up of a
elements starting with a unit element, which is followed by a series of
zeros. This expresses the fact that the sequence of events is initiated
by firing for the first time at the first plane.

AVERAGE NUMBER OF SHOTS REQUIRED

2.25 If the formulation involving the distribution of total shots is
used for the calculation, then the average number of shots ficed at the
k-th plane, Nk , is just the sum of the elements of Bk , which are the
probabilities of firing at the k-th plane in the various subintervals of the
time during which it is in range.

I
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N k= _ (2.33)... . . . . ....

Nk= Bk (. (a rows). (2.33

2.26 If the distribution of first shots is used to formulate the problem,
then the average number of shots at the k-th plane is obtained by multiply-
ing the row matrix giving the distribution of first shots at the k-th plane,
which equals

Ck = (1 0 0 . . O)Vk- , (2.34)

on the right by a column matrix D , whose j-th element is

a-j

d1 = qn . (2.35)

n=0

2.27 The matrix D both converts the distribution of first shots back
to total shots and sums the probabilities to get the average number of shots
fired at a given plane. The number of shots fired at the individual attack-
ers can be added together to get the total number of shots fired in an en-
gagement.

SPACING OF ATTACKERS NOT A MULTIPLE OF THE FIRING INTERVAL

2.28 It is now possible to extend the matrix method of determining
penetration probabilities to cases where the arrival spacing of the attack-
ers, s , is not an integral multiple of the firing interval, T . The same
general methods of procedure apply that were used in developing a solu-
tion for integral spacing, although some minor modifications are neces-
sary. The firing interval T is still assumed to be constant.

2.29 For the general case it is probably easier to set up the V matrix,
which transforms the distribution of first shots. The procedure for finding
the V matrix is now outlined. The principal modification required is a
further subdivision of the attack time so as to obtain time units commen-
surable with the arrival and firing spacings. The time during which an

16



attacker is in range is divided into aT time intervals, and the probabilities
of firing for the first time at the k--th plane in each of these intervals are
displayed as the elements of a row matrix, C(k) . The element vij of V
transforms the probability of firing at the k-th plane in the i-th position
into a contribution to the probability of firing at the (k + l)st plane in the
j-th position, so that

a-r

c(k+l) 1 ci(k)v j , (2.36)

i=l

or in matrix notation

C(k+i) = c(k)v . (2.37)

Now the shots at the (k + 1)st plane are displaced s intervals with re-
spect to those of the k-th plane, and a first shot can be fired at the
(k + i)st plane only if a shot has been fired at the k-th plane T intervals
(or some integral multiple of T intervals) previously. Thus, in general
the c nly non-vanishing vii arise when

i = j + s - (n+I)T (n=0, 1, 2, . . . ) (2.38)

and the value of the non-vanishing matrix element is

vij = pqn . (2.39)

2.30 There are two regions in which elements of V are formed excep-
tionally. If the spacIng s is equal to or greater than 2T some of the ele-
ments vil in the first column of V will be made up of a sum of terms.
This occurs because there is time for several shots at the k-th attacker be-
fore the (k + I)st attacker comes into range, and thus a first shot at the
(k + U)st attacker in the first position can result from several courses of
events in firing at the k-th attacker. There is a probability p of hitting
the first attacker immediately; if this happens the defense need not fire
again until the second plane comes into range. On the other hand, if the

17



first shot is a failure and the second a success there will still be time
to fire at the second attacker as it conmes into range; the probability of
this event is pq. The matrix element vl is formed from a sum of these
terms. Non-vanishing terms occur When

i-•1 +s -T (2.40)

and the value of vi, is

n : (1 +s -T - i)/

Vil I pqn(n=0,1,3, . . .). (2.41)

n=0

2.31 Although for purposes of mathematical convenience the duration
of the engagement with a s.ngle attacker is considered to be divided into
aT sub-intervals, it is impossible for the defense to fire at the attacker
after (a - 1)T + 1 sub-intervals; i.e. , there are (T-1) intervals in which
it is physically impossible to fire at an attacker, and the existence of
these intervals gives rise to the other exceptional kinds of matrix ele-
ment.

2.31 Since it is impossible to fire at the k-tb plane in the last (T - 1)
spaces, the doctrine states as a counsel of desperation that the (k+1)St
attacker will be fired at in positions corresponding to the last (T -1) posi-
tions for the k-th attacker, i.e., for j given by

(a - 1) -s+l < j i aT-s+l (2.42)

there will be non-vanishing matrix elements arising from positions for the
k-th attacker given by

i =j + s - (n + l)T (n=0,,2,...) (2.43)

and these non-vanishing elements are given by

vij = in (2.44)

18



Fuithermore, for the urfortunate case where -i is greater than s , new
attackers are arriving faster than the defense can fire; and the defense
wil certainly be penetrated in time. It may be -,:hat the attackers press
in so close together that the doctrine would require firing even at the
(k + 1)st plane in a physica.1ly impossible position. To account for this
contingency, a matrix element is included that transforms the probability
of firing at the k-th plane to a position for a virtual firing at the (k + I)st
plane. It will still be impossible to fire at the (k + 1)st plane, but the
probability of firing will by now have been transferred to a position such
that a further transformation will move it to a possible position for firing
at the (k + 2 )nd oi- some later plane. This process can be accomplished
by introducing a matrix element equal tc unity in the physically impossi-
ble range, so that for

(a-l) 1- s + 1 <a- - s + 1 (2.45)

and

i=j +s (2.46)

vij = i . (2.47)

Z.33 The introduction of these virtual firings assumes that shots will
be accounted for as long as there is any possibility at all of firing. Even-
tually there comes a time when the only f.xing that can be made is in a
physically excluded region, in which case penetration certainly occurs.
The various matrix elements, vii , for the general case are zhown in
Table I.

2.34 The matrix product

C(k) = C( 1 )vk- 1  (2.48)

gives the distribution of probabilities for firing first shots at the k-th

attacker. To obtain the penetration probability, Qk , for the k-th attacker
it is necessary to multiply the elements of C(k) by the probabilities of
the requisite number of failures to permit a penetration. This can be ac-
complished by multiplying C(k) on the right by a column matrix E whose
elements are given by

ej qa-n (2.49)

19



TABLE 1

ELEMENTS OF THE TRANSFORMATION MATRIX

n = 0, 1, 2,

Si Vij

J<(a - 1)7--s+l k J + s - (n + 1Wr n<(l + S - T i)/T

Spqn
nl 0

1<Jl(a- lr-s+l i =J+s-(n+lr pqn

(a -1)T- s + l<J<aT -s +1 i = J+s-(n+1IW qn

I=J+s I

All other vi = 0 , and In particular If J>ar -s +1 , vij =0 for all I
It should be noted that iax = Jmax = a .

20



where

I+fnT<__j<1 +(n+l)T(n=0, 1, 2, . . ) . (2.50)

2.35 In principle a solution can now be obtained for an arbitrary con-

stant spacing, but if it is necessary to look at the course of events in
fine detail at small intervals of a shot, the dimensionality of the trans-
formation matrix is correspondingly increased and it soon becomes neces-
sary to use some means of computation more elaborate than a desk cal-
culator. However, with an electronic computer there is no reason why
the defense zone should not be broken down into as many sub-regions as
necessary. If this is done, a set of transformation matrices depending
only on s can be obtained. It would thus be possible to calculate what
would happen if the attacker arrived with variable spacings by successively
multiplying by the transformation matrices of proper s . Further modifi-
cations would have to be made to take into account a variable spacing be-
tween shots.

PENETRATION PROBABILITY CURVES

2.36 The matrix method described has been programmed for an IBM 704
computer at the General Motors Research Center. Solutions have been ob-J tained for a as high as 30 shots and for S/T ranging from 0.1 to 0.9 shots.

2.37 Range of Parameters Considered. Penetration probabilities have
obtained for all the following values of the parameters:

s = 1,3(3)15-'

S=

T = 2(1)10

p = 0.80, 0.85, 0.90

I/ The number in parentheses is the interval between successive values of
the parameters; e.g., 3(3)15 denotes the values 3,6,9, 12,15.

-It should be recalled that the quantity affecting the results of the compu-
tations is the dimensionless ratio s/T
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results in a value of P(k) equal to one or up to 30, whichever value is
least. Table 2 shows a sample of the printed output of calculations of
the P(k) , the probability that at least one of k attackers will penetrate
the defense, for the choice of parameters a=9, s=l, T=3 , and p=0.85.

2.38 Computations were also made for the two cases of a defense
with greater depth, with the following values of the parameters:

a = 20

T= 10

s = 1(1)9

p = 0.85

and

a =30

Tr 10
s = 1(1)6

p = 0.85

The value of k was permitted to go as high as necessary to insure pene-
tration.

2.39 Typical results of the calculations are shown in Figure 2, which
shows the probabilities, P(k) , that at least one of k attackers will
penetrate the defense for the case a=9, p=0.85, and for S/T ranging
from zero to one. Figure 3 shows some results for spacings with s/IT
greater than unity. The cases calculated were -or a=3 and S/T =

1, 3/2, and 2. The case for s/T=0, derived from a binomial distribution,
was also calculated: as was the case of repeated ind.ependent arrivals
(S/IT > 3). The single-shot kill probability used was 0.85. The curves
show that the expected number of attackers required is a very sensitive
function of S/T.

SIMPLE CASES

2.40 A consideration of several limiting cases is helpful in under-
standing the results of the calculations.
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TABLE 2

SAMPLE RESULT OF PENETRATION-PROBABILITY CALCULATION

INPUT DATA

a T s p k

9 3 1 0.85000 30

OUTPUT

k P(k)

2 0.00000152
3 0.00004770
4 0.00014276
5 0.00152554
6 0.01138432
7 0.01879442
8 0.08693384
9 0.28889289

10 0.34305939
11 0.70867319
12 0.95856106
13 0.96477690
14 0.99999999
15 1.00000000
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2.41 Simultaneous Arrivals. The first case discussed is that of simul-
taneous~' ariao 0f ",tt+ a CkIer1,s P .t 'r n -mv I bee that if thereo is time for

a shots at a single attacker, the defense can be considered to be allocated
among a concentric zones surrounding the defended center. The attackers
advance one zone at each shot fired by the defense no matter whether there
is a success or a failure on the part of the defenders. Therefore, the prob-
ability of penetration is the probability of having at least k successes out
of a trials, where each success occurs with a probability p . This proba-
bility is easily obtained by summing a binomial distribution for a trials
with a probability of success p for individual trials and the required num-
ber of successes equal to or greater than k . In particular, for k greater
than (a + 1) there will certainly be at least one penetration of the defenses.
The mean number of attackers shot down is

k = ap (2.51)

so that an attack in strength ap is sufficient to achieve a penetration half
of the time.

2.42 One-Shot Spacing. Another case is that of attackers arriving at
a spacing equal to the interval between successive firings. For this case,
intercepts will occur in the outermost defensive zone until there is a fail-
ure, after which the defense is forced to withdraw one zone. Therefore,
penetration of the defenses occurs after a failures. The probability of
having k successes before the occurrence of a failures is given by the
so-called negative binomial distribution, and the mean number of successes
is found to be

k = ap (2.5)
q

The variance about this mean is

ap (2.53)
q 2

2.43 Saturation Attack. It is more difficult to discuss the solutions
given by the model for fractional spacings between zero and one, but some
observations can be made on the maximum number of attackers required to
saturate the defenses, and on the shape of the penetration probabJlity
curves. For each failure, the atzackers are able to move in one zone
closer, but even for a success, all the unopposed attackers move in
(1 -S/T) zones so that the maximum number of attackers required is
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ISI
k = 1-s + i (2.54)

I Also, on the average, an attacker will advance one zone unopposed every
1/(1 - S/T) shots, so that the depth of defense is decreased, and the pene-
tration probability will display a sudden increase every 1/(l -S/T) shots.

I The curves of Figure 2 display these sudden increases.
2

I

I
I
I
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I
I
I
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III. AVERAGE ATTRITION OF ATTACK FORCE

3.1 The calculations based on the model developed in Section II
give the probability of penetration of at least one of k attackers as a
function of the number of attackers, the spacing of the attackers, the
depth of the defense, and the single-shot kill probability of the defen-
sive missiles. The exact calculations of the model can be used to
check estimates of the mean number of attackers required for penetration
of the defenses.

3.2 An approximate estimate of the average attrition of an attack
force is obtained by equating the mean engagement time (aT+kS) to the
time (n T) that is required for the mean number of firings n that would
achieve k kills. The approximation is:

Ti=*/p (3.1)

aT+ks = nT (3.2)

or
-•_ ap

kp (3.3)

3.3 The quantity k is shown plotted against the calculated values of
the mean number of attackers required to ensure penetration in Figure 4.
Although there is some scatter of the calculated mean number of attackers
around the line in Figure 4, the agreement between the calculated number
and the estimated number is surprisingly good, and the expression given
above for k serves as a reasonable estimate.
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3.4 Range of Validity of the Approximation. The approximation of
paragraph (3.Z) obviously fails when ps is equal to T , for then the
approximated k becomes infinite. However, when S/-T=O , Equation
(3.3) reduces to

k=ap , (3.4)

which is the mean for simultaneous arrivals given in Equation (2.51).
When s = T , Equation (3.3) reduces to

kap/q , (3.5)

which is the mean for a cne-shot spacing given in Equation (2.5Z). There-
fore, the approximation is valid as long as

s/T < 1 .(3.6)

3.5 Effect of Spacing of Attackers. The expression for • is directly
proportional to a , the parameter representing the number of shots that
could be made at a single attacker. To obtain k , the quantity a is mul-
tiplied by a factor p/(1 - ps/T) , which gives a measure of the effective-
ness of the defense as a function of p and S/T . The quantity p/(1 -ps/T)
is plotted as a function of s/T for various values of p in Figure 5. The
curves show that if the attackers come in even 0.1 of a shot apart, about
10% more are needed than are needed for simultaneous arrivals, and the
number required increases rapidly with increasing spacing.

4
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